Adversarial Actor-Critic Method for Task and Motion Planning Problems Using Planning Experience

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actor-Critic Policy Learning in Cooperative Planning

In this paper, we introduce a method for learning and adapting cooperative control strategies in real-time stochastic domains. Our framework is an instance of the intelligent cooperative control architecture (iCCA). The agent starts by following the “safe” plan calculated by the planning module and incrementally adapting its policy to maximize the cumulative rewards. Actor-critic and consensusb...

متن کامل

Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the polic...

متن کامل

ACtuAL: Actor-Critic Under Adversarial Learning

Generative Adversarial Networks (GANs) are a powerful framework for deep generative modeling. Posed as a two-player minimax problem, GANs are typically trained end-to-end on real-valued data and can be used to train a generator of high-dimensional and realistic images. However, a major limitation of GANs is that training relies on passing gradients from the discriminator through the generator v...

متن کامل

Adaptive Motion Planning for Complex Planning Problems

Motion planning has been used to solve problems of high complexity in both robotic and biological domains. In robotics, the topology of the planning environment often drives the problem’s complexity. Environments can consist of many different regions each of which may be well suited to a specific planning approach. In biological domains, problem complexity is primarily driven by the size of the...

متن کامل

Adversarial Hierarchical-Task Network Planning for Real-Time Adversarial Games

Real-time strategy (RTS) games are hard from an AI point of view because they have enormous state spaces, combinatorial branching factors, allow simultaneous and durative actions, and players have very little time to choose actions. For these reasons, standard game tree search methods such as alphabeta search or Monte Carlo Tree Search (MCTS) are not sufficient by themselves to handle these gam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33018017